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The effect of contact flattening and material properties on the fracture stress calculation for
the diametrical compression test used to evaluate compact strength was examined through
finite element simulations. Two-dimensional simulations were carried out using linear
elastic, elastoplastic, and porous elastoplastic models with commercial finite element
software. A parametric study was performed by varying the elastic modulus (E), Poisson’s
ratio (ν), contact frictional coefficient (µ), yield stress (σ yield), and compact relative density
(RD). Stress contours generated from these simulations were compared to the Hertzian and
Hondros analytical expressions. Linear elastic simulations show excellent agreement with
the analytical solutions. Significant deviation, however, occurs for the elastoplastic and
porous elastoplastic simulations at larger diametrical strain with material plasticity. A better
understanding of the stress-state of diametrically loaded plastically deforming disks has
been demonstrated in this computational and experimental work. Results from these finite
element simulations confirm that the standard tensile strength calculation: σ f = 2P/πDt, is
suitable for linear elastic materials. However, the incorporation of plasticity into the material
model results in a significant change in the maximum principal stress field (magnitude and
location) rendering the Hertzian estimate of tensile strength invalid. A map to check the
validity of the Hertzian equation is proposed. C© 2003 Kluwer Academic Publishers

1. Introduction
A fracture criterion is typically expressed as the rela-
tionship between an externally applied stress field, the
geometry of defects in a specimen, and material proper-
ties (namely fracture toughness). Such fracture criteria
can be used in conjunction with an experiment [1–3] to
determine the fracture toughness of a material, if defect
geometry and external stresses are known, or to estimate
the maximum size of defects present in a component if
fracture toughness and external stresses are known.

Strength tests such as the tension test, the diametrical
compression test, and the simple compression test de-
termine the limit of performance of a material to stress.
As such, strength criteria can be built using a combina-
tion of the local principal stresses. For brittle materials,
these limiting stress-states (Fig. 1) reflect the combi-
nation of the fracture toughness of the material and
the presence of defects in the tested specimen. Such
tests are applicable when we are interested in charac-
terizing the fracture related mechanical performance of
specimens in which exact knowledge of the defects and
their interaction with the local stress is unknown. Ide-
ally, these tests require: (a) uniform defect population,

otherwise the local stress-state is unknown, (b) spec-
ified fixed stress mode, (c) consideration of statistical
volume-based Weibull-type arguments, which take into
account the probability of the presence of defects with
critical sizes over the volume of the specimen [2–6].

The diametrical compression test is also known as:
the diametrical tensile test, Brazilian disk test, indirect
tensile test, compact crushing test, or compact hard-
ness test. It is used as a mechanical testing technique
spanning many technological fields, from concrete
[7–9] to ceramics [10–13] to metal composites [14, 15]
to materials used in dentistry [16–18], to materials used
in the processing of pharmaceutical dosage forms [2, 3,
19–23]. The test induces a local tensile stress in the
transverse direction of the applied compressive stress.
The diametrical compressive test allows for the use of
simple specimen geometry (disk, compact, tablet, etc.)
to measure a limit force required to cause failure, which
is used in the estimation of tensile strength (Equation 4).
The simple geometry and loading conditions are attrac-
tive for materials which are too difficult to process or
machine into the ASTM standard “dogbone” shaped
specimen [1], which is pulled in tension, or the more
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Figure 1 Schematic representation of a failure locus near the shear stress
dominant region for pressure-dependent yielding materials. p = 1/3
(σx +σy +σz) hydrostatic (compressive) stress; q = {(1/2)[(σx −σy)2 +
(σy −σz)2 + (σx −σz)2]}1/2 Mises equivalent shear stress; where σx, σy,
and σz represent the principal directions of stress.

appropriate fracture toughness compact tension sample
[24].

In the diametrical compression test, we assume that
the tensile strength of the specimen can be expressed
in terms of the maximum principal tensile stress in the
sample. The practical usage of this test often violates
all or most of the three conditions stated above. Dis-
tribution of the defects is often non-uniform, the stress
mode may vary, and statistical arguments are not used
because despite their rigor, they are cumbersome to
handle. Despite these disadvantages, simple geometry,
ease of specimen preparation, and quickness of testing,
in addition to empirical correlations with other aspects
of mechanical behavior (e.g., simple compact tension
[25]), have rendered the diametrical compression test
popular in industry. Analogous to the diametrical com-
pression test, is the Charpy impact test used with metal-
lic materials of various ductility, and the melt flow index
for polymer processing, which despite the fact they are
not “clean” fundamental tests, are very useful in in-
dustry. It is often argued that such tests provide useful
information within a group of similar materials with a
small composition/structure variation or for a given ma-
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Figure 2 Schematic representation (a) Hertz point loading conditions, (b) Hondros distributed loading conditions, and (c) uni-axial diametrical
compression (top platen compressing) and cracks present after failure along with major measurable variables: Pf = failure load; Uf = displacement
at failure; D0 = initial diameter; δ = contact flattened width; 2α = contact flattened angle.

terial within a relatively narrow processing parameter
window. In any case, the usefulness of the results relies
heavily on the ability of the engineer to understand the
details of the test in order to identify the applicability
window.

The diametrical compression test has been used to
estimate strength for elastically deforming materials,
which are susceptible to brittle fracture. Because of the
ease of testing and the simple specimen geometry, this
test is often applied to materials which exhibit limited
but measurable macroscopic plastic deformation before
fracture [10, 14, 15, 21, 23, 26–28]. It is often claimed
that the test in that case is invalid. Given that the test is
used in industry, it is important to understand the im-
plications of limited ductility on this test. To this end,
in this work, we focus our effort in offering a better
understanding of the diametrical stress-state in speci-
mens with some level of permanent deformation before
fracture, through numerical analysis and experiments.

2. Background
In 1895, Hertz [29] had developed mathematical ex-
pressions (Equations 1–3) to describe the stress-states
for elastic disks and spheres under diametrical com-
pression under point loading conditions (Fig. 2a).
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1 = (R − y)2 + x2, β2

2 = (R + y)2 + x2, P is the load
to fracture, R is the radius, and t is the thickness.

The Hertz solution predicts that the maximum prin-
cipal stress occurs in the center of the disk, and is ten-
sile along the x-direction. Assuming that the maximum
tensile principal stress is responsible for the failure of
the specimen, the tensile strength, σf, is obtained by
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substituting x = y = 0 in Equation 1:

σf = 2P

π Dt
(4)

where D is the diameter.
The work of Hertz was later modified by Hondros [7]

to include distributed loading conditions (Fig. 2b). The
Hondros solution along x = 0 and y = 0 respectively
is given by:

σθy, σθx = ± 2P

απ Dt

[
(1 − r2/R2) sin 2α

(1 ∓ 2r2/R2 cos 2α + r4/R4)
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τrθ = 0 (7)

Mathematically, both analyses are exact elasticity so-
lutions and satisfy equations of equilibrium. The anal-
ysis by Hertz [29–31] and Hondros [7] converge to
Equation 4 at x = y = 0 for 2α → 0. The solutions
assume the following: (i) small strains are involved,
(ii) frictionless contact at the boundary, (iii) point load-
ing conditions for the Hertz equations, and (iv) dis-
tributed loading conditions over an arc for the Hondros
equations. There has been a significant amount of work
[11, 17, 26, 32, 33] related to the Hondros distributed
loading conditions, numerically and through the use of
experimental techniques, such as padding materials on
the platens [11, 17] or grinding of the contact face [32].
Experimentally, the effect of load conditions on failure
and stress distribution has been shown to be significant
through computational techniques [26, 32, 33], the use
of controlled platen geometry (both size [22] and shape
[16, 17]) and platen material properties [11] as well
as ground specimen contacts [32]. Hondros’ solution
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Figure 3 Normalized tensile stress based on Hondros distributed loading
conditions as a function of distributed loading angle, 2α [7].

Figure 4 Representation of the finite element mesh used to simulate
diametrical compression. Advantage is taken of the geometric symmetry.

shows (Fig. 3) that a distributed load will affect the
maximum calculated tensile stress. Distributed loading
angles greater than 30◦ show a significant (>10%) de-
viation from point loading (2α = 0) conditions.

3. Finite element simulation method
Two-dimensional finite element (FEM) simulations
were conducted using the commercial software
ABAQUS Version 6.1 (HKS Inc., Pawtucket, RI). Static
stress analysis was performed with a geometric model
(Fig. 4) that consisted of 2700 continuum, plane stress
or plane strain, 4-noded full integration elements. Due
to symmetry, only a quarter of the entire geometry was
modeled. Uniaxial loading was performed by imposing
a vertical displacement, U , of up to 10% of the initial
diameter, D, using a rigid surface which interacts with
the finite element mesh via a frictionless or frictional
contact. Included in Figs 2c and 4 is a representation of
the contact-flattening event.

Three types of materials were used in the simulations:
(i) linear elastic which is useful for brittle materials, (ii)
linear elastic, perfectly plastic (Mises yield surface), in
order to incorporate the effects of limited ductility and
(c) linear elastic, perfectly plastic porous using Gur-
son’s model, which is capable of describing porous ma-
terials with low levels of porosity [34]. Table I depicts
the parameters used in this FEM work. The following
parametric studies were covered: (i) elastic properties,
(ii) contact friction, (iii) plane stress (σz = 0) or plane
strain (εz = 0) conditions, (iv) yield strength and (v)
relative density at various levels of yield strength. Some
of the material properties chosen are based on published
results [27, 28, 35] of microcrystalline cellulose.

4. Finite element simulation results
4.1. Elastic simulations
Figs 5 and 6 show a typical distribution of Mises, hydro-
static and maximum principal tensile stress normalized
with respect to the elastic modulus, respectively, re-
sulting from the elastic simulation. Mises stress is the
stress invariant that represents the distortional intensity
of the stress-state, while hydrostatic stress is the stress
invariant that is responsible for volume changes [36].
The maximum of Mises stress occurs just under the
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Figure 5 Contour of (a) Mises stress and (b) hydrostatic stress from simulation using parameters from #1 (Table I) at U/D = 0.02 and δ/D = 0.115
normalized for elastic modulus.

Figure 6 Contour of σx stress normalized for elastic modulus from simulation using parameters from #1 (Table I) at U/D = 0.02 and δ/D = 0.115.
Only tensile stresses are plotted.
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surface, as shown previously [37], and is a direct effect
of the generated contact stresses. In addition, the maxi-
mum hydrostatic pressure occurs at this contact, which
may lead to local densification of the specimen.

The simulations show that maximum principal ten-
sile stresses develop in the transverse direction to load-
ing with a maximum at the center as predicted by the
Hertz and Hondros solutions. Such stress is statistically
responsible for brittle fracture of an elastic material
(Fig. 6). This distribution of tensile stresses also ex-
plains the orientation of failure along the loaded axis
observed experimentally. The contour of transverse ten-
sile stress matches those seen in previous experimental
[3, 10, 18, 21, 38–40] or theoretical/numerical work
[4, 7, 16, 21, 29–33]. Fig. 7 shows that the stresses
from the linear elastic simulation(s) (e.g., simulation
#1, Table I) are in agreement with the Hertz solution
(Equation 1) near the center of the specimen along the x
(Fig. 7a) and y (Fig. 7b) axis. Disagreement is found to
occur near the rigid boundary contact (x/R or y/R = 1)
where the analytical solutions are not valid.

For all linear elastic simulations (#1–5, Table I),
the stress field scales with the external load and is
independent of the elastic properties. A small region
of tensile stress is generated near the rigid contact. At
this level of boundary displacement (U/D = 2%), the
tensile stress at the edge of the contact is less than 5%
of the maximum tensile stress seen along the vertical
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Figure 7 Transverse stresses (σx) normalized for elastic modulus gen-
erated from elastic #1 (Table I) and elasto-plastic finite element simula-
tions #6–8 (Table I) as compared to the Hertz solution (Equation 1) along
(a) horizontal diameter (y = 0); where x/R = 1 is at the compact edge
and (b) the vertical diameter (x = 0); where y/R = 1 is at the compact
edge.

diameter. Regardless of this difference in magnitude,
principal tensile stresses generated in this region may
give rise to occasional failure due to favorably oriented
surface cracks.

4.2. Elasto-plastic simulations
The incorporation of plasticity (e.g. simulations #6–8,
Table I) into the finite element model, leads to substan-
tial deviation between the analytical elastic expressions
and the numerical elastoplastic solution along both the
x (Fig. 7a) and y-axis (Fig. 7b). This difference de-
pends upon the magnitude of the yield stress to elastic
modulus ratio. For a given relative displacement, U/D,
between the platens, as the material yield strength in-
creases the deviation from the analytical solution de-
creases near the geometric center.

In addition, several aspects of the stress-state change
within the specimen with the incorporation of plasticity
(e.g., simulations #6–8, Table I) into the finite element
model. First, although the maximum principal stress
is still in the transverse direction, the location of this
stress shifts away from the center e.g., Fig. 8a (Sim-
ulation 7, Table I) demonstrates this off-center max-
imum principal stress at 2% diametrical strain. The
magnitude of this maximum principal tensile stress is
approximately 2.5–3 times the level predicted by the
elastic solution (Equation 4). Plastic deformation ini-
tiates under the contact with the rigid platens (region
of highest Mises stress, Fig. 8b) and expands towards
the center as the overall deformation progresses. The
maximum principal stress occurs at the boundary of
the plastically deformed region and shifts as the edge
of the plastically deforming region expands towards the
center (Fig. 9). Eventually, when the plastic deforma-
tion spreads through the whole specimen, the location
of the maximum principal stress returns to the center.
The exact position and magnitude of the maximum ten-
sile stress is a function of the ratio of elastic to plas-
tic material properties as well as rigid platen displace-
ment (Fig. 9). A similar off-center peak, occurring near
y/R = 0.4, was noticed in the experimental work of
Pitt et al. using photoelasticity on the diametrical com-
pression test with convex cylindrical disks [21]. In that
work, an epoxy resin Araldite CT200 (Ciba-Geigy Ltd.)
cured with 30% w/w Hardener 901 was used, which has
a published elastic modulus and yield stress of 3 GPa
and 170 MPa, respectively.

The volume over which all of the maximum trans-
verse stress is acting shows a significant reduction in
comparison with the purely elastic simulations. This
has implications, on the statistics of defect size, loca-
tion, and orientation as they relate to compact failure
[2–4, 6, 10].

Similar to the elastic case, tensile principal stresses
also develop at the edge of the specimen near the region
of platen contact. Their magnitude reaches almost 50%
of the maximum tensile stress in the specimen (enlarged
area of Fig. 8), however, occurs over a small material
volume. In combination with the higher sensitivity of
surface cracks, such tensile stresses can account for
occasional failures observed experimentally to initiate
at this location [9, 10, 17, 38, 39].
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Figure 8 Contour of (a) σx and (b) Mises stress normalized for elastic modulus from simulation using parameters from #7 (Table I) at U/D = 0.02
and δ/D = 0.115. Only tensile stresses are plotted in the σx contour. [Note that a maximum of 0.011 should appear on the graph – any larger numbers
are interpolation error].
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Figure 9 Normalized stress profiles for elastoplastic simulation (#7,
Table I) as a function of position along the vertical diameter (y/R = 1
is the compact edge) and diametrical strain (U/D): (a) 0.2%; (b) 1.1%;
(c) 1.3%; (d) 1.6%; (e) 2.0%; (f) 2.5%; (g) 3.0%; (h) 5.0%; (i) 10.0%.

4.3. Porous elasto-plastic simulations
Powder compacts are usually not fully dense, and there-
fore the volume of pores and their subsequent den-

sification may play a role in the local stress field.
This densification event was simulated using the Gur-
son porous plasticity model [34] (Simulations #26–33,
Table I) for initial relative densities of 0.80 and 0.90 as
well as different modulus to yield strength ratios. The
void fraction at a diametrical strain (U/D) of 0.02 is
plotted as a contour in Fig. 10a. A region of high den-
sity is observed near the rigid boundary contact near
the region of highest hydrostatic pressure, Fig. 10d.
Similar to the elastoplastic simulations, an off-center
maximum principal tensile stress of 2.5–3.0 times the
elastic simulation was seen for these simulations as well
Fig. 10b.

5. Experimental verification
To corroborate the simulations presented above, ex-
periments were conducted for two model materials:
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Figure 10 Contour of (a) void fraction using a porous plasticity model for initial relative density of 0.90 and σyield/E = 0.010 at U/D = 0.02
(b) σx (c) Mises and (d) hydrostatic (pressure) stress normalized for elastic modulus from simulation using parameters from #24 (Table I). Only tensile
stresses are plotted in the σx contour.

elastic—dicalcium phosphate anhydrous (DCP), a brit-
tle ceramic and elastoplastic—microcrystalline cellu-
lose (MCC), a soft deformable natural macromolecule.
Disk specimens of 10.32 mm in diameter were com-
pressed on an automated Carver Press (Carver, Inc.,
Wabash, IN) to a measured relative density of 0.8. An
electromechanical material testing system (MTS Al-
liance RT50, MTS Systems Corporation, Eden Prairie,
MN) was used to conduct diametrical compression.
In this experiment, a 5-kN load cell was used to per-
form diametrical compression at a displacement rate of

Figure 11 Optical images of fractured, by diametrical compression, 10.32 mm flat faced compacts of (a) dicalcium phosphate anhydrous with a RD
of 0.80 and (b) microcrystalline cellulose with a RD of 0.83.

4 mm/min on the above compacts between 101.6 mm
hardened steel platens (HRC > 58). Typical failed com-
pacts are shown in Fig. 11. The major measured param-
eters were the load to failure (Pf), the strain to failure
(Uf/D) as well as the length of the flattened contact
(δ/D), which are schematically represented in Fig. 2c.
Force and displacement were recorded for the calcula-
tion of stress (Equation 4) and strain (U/D) as shown
in Fig. 12. In this plot, the difference in material prop-
erties between DCP and MCC is readily apparent. The
“brittle” DCP exhibits linear elastic behavior with an
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Figure 12 Stress-strain data for 10.32 mm flat faced compacts under-
going diametrical compression at 4 mm/min for dicalcium phosphate
anhydrous (DCP; Relative Density = 0.80) and microcrystalline cellu-
lose (MCC; Relative Density = 0.83).

abrupt failure at a stress of 4 MPa and a strain of 0.005.
The behavior of the “plastic” MCC is quite different.
Significant diametrical strain of nearly 0.02 is induced
before initial failure proceeds at a stress of 5 MPa. The
fracture in this case is more gradual, and the material
is able to absorb more energy as it fails.

Of particular interest is the exact location of crack
initiation and propagation for materials that deform
permanently. In other words, whether a simulated
off-center maximum principal tensile stress (Fig. 8)
leads to an off-center crack initiation. To illustrate
this, high speed images were captured (Fig. 13)
at 500 frames/s (Redlake Motionscope 1000S-110S-
0001, Morgan Hill, CA) during a diametrical compres-
sion test of MCC using the MTS Alliance RT50. Im-
age analysis (Image-Pro Plus v4.5, Media Cybernetics,

Figure 13 Time elapsed optical images of the diametrical compression test for a 10.32 mm flat faced microcrystalline cellulose compact with a relative
density of 0.83. Images captured with a high speed camera at 500 frames/second.

Silver Spring, MD) was performed on these images near
the moving platen, at the compact center, and near the
static platen (Fig. 14). Drastic changes in pixel inten-
sity are interpreted as cracks, and are marked with a
circle in the figure. Careful observation shows that the
crack originates along the loading direction near the
loading platen after about 12 ms, a second crack initi-
ates near the static platen after 22 ms, and both cracks
propagate towards the center to form a continuous dia-
metrical crack at 28 ms. Several research groups used
various techniques to produce similar results on inho-
mogeneous and off-center crack initiation and propaga-
tion for materials that show both elasticity and plasticity
[9, 10, 17, 38, 39].

6. Discussion
The finite element solution of elastic diametrical com-
pression shows that the Hertz solution accurately pre-
dicts the magnitude and location of the maximum prin-
cipal stress (Figs 6 and 7) as was also shown before
[4, 7, 16, 21, 30–33] as well as with work conducted
previously using experimental techniques such as pho-
toelasticity [3, 10, 18, 21, 38, 40]. At a level of diamet-
rical strain of 2%, for all elastic parameters investigated
(Table I), only a ±0.6% deviation is realized (Fig. 15b).
In general, the failure of brittle materials occurs at rela-
tively low levels of strain (less than 2%), which deems
the equation for tensile strength (Equation 4) valid. In
fact, the intention of the diametrical compression test
is to replace the tedious sample preparation used for
tensile testing of complex shaped specimens of brittle
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Figure 14 Graphical representation, through image analysis of selected regions (black box), of crack initiation (circled area of graphs) and propagation
as a function of time and position: (A) left edge of compact; (B) middle of compact; and (C) right edge of compact.

materials [1] and replace it with a simple and efficient
test to determine tensile strength under a compressive
mode of applied stress [8].

The validity of Equation 4 comes into question in the
presence of plastic deformation, due to the severe ef-
fect on non-uniform stress distribution (Fig. 8) and off-
center peak stress generation, which becomes a func-
tion of both diametrical strain (Fig. 9) and material
properties (Fig. 15). The off-center peak of maximum
tensile stress is much higher, in some cases three times
greater, than the Hertz estimate (Equation 4). Under
these circumstances, the peak force used to calculate
strength according to Equation 4 underestimates the
tensile strength. The maximum principal stress has a
local peak compared to the elastic solution where the
maximum transverse stress is practically uniform along
the axial direction. This difference has significant impli-
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Figure 15 Comparison between normalized Hertz solution (Equation 4)
and (a) elastic #1–5 and elasto-plastic finite element simulations #6–8
and (b) elastic only simulations #1–5 as a function of rigid boundary
displacement (U ). Note differences in ordinate magnitude.

cations on the statistics of fracture, given the importance
of the volume arguments in specimen failure. More-
over, significant tensile stresses develop at the edge of
the contact (Fig. 8), which can lead to a different mode
of fracture compared to the purely elastic deforming
bodies.

Plastic deformation appears at relatively large dia-
metrical strains. In other words, the strain at which
failure occurs becomes an important criterion for the
validity of the Hertzian equation (Equation 4), un-
der the assumptions of both homogeneous and inho-
mogeneous defect microstructure for materials with
drastically different properties. To summarize the
above results, a “validity map” of the Hertz solu-
tion was sketched on the basis of material prop-
erty ratios (σyield/E), rigid boundary displacement,
and results of the finite element simulations (#9–25,
Table I). In Fig. 16 we plot the diametrical strain (U/D)
at which a 10% deviation from the Hertzian solu-
tion (Equation 4) occurs. Above the plotted data, the
Hertzian solution is considered invalid (>10% devia-
tion) and below these data the Hertzian conditions are

Figure 16 Finite element simulation results (#9–22, Table I) represent-
ing the validity (within 10%) of the Hertzian equation for maximum ten-
sile stress (Equation 4) as a function of material properties (E and σyield)
and normalized rigid boundary displacement (U/D). Shaded areas rep-
resent realistic ranges of properties and failure strains of microcrystalline
cellulose (MCC) and dicalcium phosphate (DCP).
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applicable, i.e. Equation 4 is a valid representation of
the maximum principal stress-state. This trend appears
to be a weak function of elastic modulus. However, as
the yield strength to elastic modulus ratio decreases,
the displacement (or flattened contact width) at which
a deviation from Equation 4 occurs becomes very small.
In terms of the porous plasticity simulations (#26–33,
Table I), the “validity window” of Fig. 16 is increased
with increasing porosity in the range investigated here.

As was seen in Fig. 10a, there is a region under the
platen where the material densifies. This local change
of material properties alters the way stresses are trans-
ferred into the center of the specimen, and is respon-
sible for the smaller deviation from the predictions of
Equation 4, for the conditions investigated here. The
data presented here clearly show the dependence of
material properties, relative density, and failure strain
on the validity of the Hertzian and Hondros equations
on accurately predicting the maximum transverse stress
in a diametrically loaded body.

Ultimately, product development using strength as a
criterion usually means cross comparison of data and
thus data interpretation. Careful consideration should
be given to the interpretation of diametrical strength
data knowing that the materials used do deform plas-
tically to some finite level and fall outside small com-
position/structure variations or a relatively narrow pro-
cessing parameter window.

7. Conclusions
Finite element simulations of the diametrical com-
pression test involving two-dimensional elements were
completed for linear elastic, elasto-plastic, and porous
elasto-plastic materials. Linear elastic finite element
simulations show excellent agreement with previous
work and analytical expressions. The effect of contact
flattening has been demonstrated to have significance,
for materials that show plastic deformation or densi-
fication, on the distribution and volume of transverse
(tensile) stress. For plastically deforming materials, a
better understanding of the internal stress-state has been
demonstrated. The maximum transverse stress is lo-
cated away from the compact center along the vertical
diameter, which leads to a deviation from the Hertzian
prediction of stresses in this region. If maximum prin-
cipal stress is used as a fracture criterion, then the off-
center peak will translate to off-center crack propaga-
tion, which was verified using high-speed photography
and image analysis. The non-homogenous stress dis-
tribution under diametrical compression for plastically
deforming materials is also a function of the ratio of
elastic to plastic material properties as well as diamet-
rical strain. The finite element simulations also predict
a significant amount of tensile stress generated near the
loading boundary, which is realized in crack formation
near this area. Simulations that involve compacts of dif-
ferent initial relative density show significant densifica-
tion near the region of platen contact under diametrical
loading.

The Hertzian equation generally used to calculate
tensile strength, σf = 2P/π Dt , is shown to be suitable

for materials which undergo brittle fracture (linear elas-
tic). Careful attention to both the location of crack prop-
agation and diametrical strain at which failure occurs
should be made when calculating tensile strength for
materials which deform plastically and suffer from sub-
stantial irreversible contact flattening. A validity map of
the Hertzian equation used to estimate tensile strength
has been clearly demonstrated based on finite element
simulations for a range of elastic and inelastic material
properties.
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Compaction Technology” (Marcel Dekker, 1996).

3638



29. H . H E R T Z , Gesammelte Werke (Collected Works), Leipzig, 1895.
30. D . M A U G I S , “Contact, Adhesion and Rupture of Elastic Solids”

(Springer Series in Solid-State Sciences, 2000) Vol. 130.
31. S . P . T I M O S H E N K O and J . N . G O O D I E R , “Theory of Elas-

ticity” (McGraw-Hill, New York, 1970).
32. M. K. F A H A D , J. Mat. Sci. 31 (1996) 3723.
33. K . S H I N O H A R A and C. E . C A P E S , Powder Technol. 24 (1979)

179.
34. C . S . D E S A I and H. J . S I R I N A R D A N E , “Constitutive Laws

for Engineering Materials” (Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1984).

35. R . J . R O B E R T S , R . C . R O W E and P . Y O R K , Int. J. Pharm.
105 (1994) 177.

36. G . E . D I E T E R , “Mechanical Metallurgy” (McGraw-Hill,
London, UK, 1988).

37. S . B I W A and B. S T O R A K E R S , J. Mech. Phys. Solids 43(8)
(1995) 1303.

38. A . C A S T R O-M O N T E R O, Z . J I A and S . P . S H A H , ACI
Mat. Journal 92/M29 (1995) 268.

39. C . A . T A N G, X. H. X U, S . Q . K O U, P . A . L I N D Q V I S T

and H. Y. L I U , Int. J. Rock Mech. & Min. Sci. (In press).
40. Y . H I R A M A T S U and Y. O K A , ibid. 3 (1966) 89.

Received 15 July 2002
and accepted 9 June 2003

3639


